
1. Informal Description of Hidden Markov Models 
 
Suppose we have a set of N urns, each with balls of M colours in 
different proportions. According to some random process, I 
randomly choose an urn and then select a ball from this urn with 
replacement. You get to see the colour of the ball but not which 
urn the ball comes from. Then, I choose another urn and select 
another ball. The process is repeated. 
 
This is a Hidden Markov Model. The urns are the "hidden states" 
and the colours of the balls are the "observed signals". A Markov 
chain governs the successive choices of the urns, i.e., the 
transition matrix of the Markov chain dictates the choice of the 
urns.  
 
The main characteristics of an HMM are 
 

1. The N hidden states. 
 
2. The M distinct types of observations, which are the colours 

of the balls in this example. We could have had continuous 
valued observations of course. 

 
3. The state transition probability matrix A = {a jk} giving 

the conditional probability that we are in state k at time 
(t+1) given that we were in state j at time t, i.e.,  
ajk= P[Qt+1= Sk| Qt= Sj], 
where S and Q are both used for denoting the states; S1, 
S2,…, SN are the N states and Qt is the state at time t. 

 
4. The probability distribution of the observations, 

conditional on a state. In our example, this is the 
conditional probability of choosing a ball of a given 
colour, after the urn has been selected. Bjv = probability 
of observing a ball of v-th colour from the j-th urn. 

 
5. The initial state distribution Π, which is the probability 

distribution governing the initial choice of the states. 
The probability that the j-th urn is the first urn to be 
selected is Πj. 

 
Together, these parameters are denoted by λ in the literature. 

 
2. The Three Basic Problems for HMM. 

 
2.1 Evaluation Problem. Given the parameters of an HMM, i.e. 
given λ, calculate the probability of realisation of a sequence 
of observations O. (Forward-Backward algorithms) 
 
That is, compute P[O|λ] 
 



2.2 Decoding or Classification Problem. Given an observation 
sequence O, find the sequence of hidden states most likely to 
have occurred. That is, compute   
 
argmax P[Q|O]  
  Q   where   Q = q1, q2,…, qT is the series of states 
indexed  by time. (Viterbi Algorithm) 
 
2.3 Estimation or Training Problem. Given a sequence of 
observations, fit the HMM. That is estimate λ = (A, B, Π) the 
parameters of the HMM, that maximize P[O|λ]. (Baum-Welch 
Algorithm, a type of EM algorithm)  
 
 

3.Application of Hidden Markov Models. 
 
The majority of the state-of-the art Automatic Speech Recognition 
systems employ HMM's. More recently, HMM's have been used in the 
prediction of gene sequences. We first describe the attempts to 
use HMM's to model phenomena other than Speech. 
 
HMM's have been used in modelling daily rainfall in a city. It is 
quite common to use the rainfall data for each day of the year 
going back several years to compile rainfall summary statistics 
like average rainfall and its variability. However, some 
questions regarding rainfall cannot be answered unless there is a 
stochastic model for the rainfall-generating process.  
  
E.g., we may ask the question "What is the probability that there 
is more than X cm of rainfall in a given week and the longest dry 
run is no longer than k days?"  
 
So to answer a question like the one we posed, one would fit a 
stochastic model to the time series, and then simulate generate 
different sample paths and get the quantities of interest using 
Monte Carlo methods. A good model will capture the serial 
relationship between successive observations. 
 
The time series of wet-dry days can often exhibit persistence or 
anti-persistence. After two dry days in Singapore, it is quite 
likely we get rain on the third day. This type of modelling can 
have straightforward and useful parallels in the financial 
markets.  
 
Researchers have also fit HMM's to a time series of the Old 
Faithful geyser's waiting times between successive eruptions and 
duration of the eruptions. 
 

4. Applications in Speech Recognition 
 

In Automated Speech Recognition systems, the task is to recognise 
an utterance known to have come from a dictionary of V different 



words. Each utterance is an acoustic signal or observation 
sequence o1, o2,…, oT. 
 
The process {OT} generated by two probabilistic models: 
 
1. The hidden Markov Chain {QT} representing the configuration of 
the vocal tract at successive instants in time. 
 
2. A set of probability distributions one for each state Qt that 
produces the observations ot from a known finite set of 
observations. 
 
 The "training process" involves taking multiple instances of 
utterances of each word and then fitting an HMM to them. So we 
fit an HMM for each word. The multiple training instance of the 
same word also typically includes the utterances at different 
speeds. Speakers can also pause between syllables. 
 
The classification or decoding problem involves taking the 
sequence of the observations and computing the probability of 
this sequence under each of the different HMM's. The word is 
classified as corresponding to that HMM under which this 
probability is a maximum.  
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