
QF	624:	Machine	Learning	for	
Financial	Applications
Technical	Material	(Appendices)

Master	of	Science	in	Quantitative	Finance	
Lee	Kong	Chian School	of	Business

Saurabh	Singal
July	2018

Additional	Material

§ Appendix	1:	Clustering
§ Appendix	2:	Gaussian	Mixture	Models	(GMM)
§ Appendix	3:	Support	Vector	Machines	(SVM)
§ Appendix	4:	Hidden	Markov	Model	(HMM)
§ Appendix	5	Neural	Networks
§ Appendix	6:	Backpropagation	explained	in	depth

Appendix-1:	Clustering

• What	is	Clustering?
• Divide	data	points	into	groups,	such	that	points	
within	each	group	are	similar	to	each	other	and	
dissimilar	to	points	outside	of	this	group.

• The	two	broad	families:	Agglomerative	and	Divisive	
Clustering

Agglomerative	Clustering

• In	Agglomerative	clustering,	each	data	point	is	
initially	assigned	to	one	cluster,	
– At	subsequent	steps,	we	merge	two	clusters	into	
one,	

– The	number	of	clusters	is	reduced	by	one	at	each	
step.	

–We	start	with	N	clusters	and	end	with	1	cluster.	
– Bottoms	up	approach

Divisive	clustering
• In	Divisive	clustering,	all	the	data	points	are	assigned	
to	a	single	cluster	

• and	at	each	time	step,	we	split	a	cluster.
• The	number	of	clusters	is	increased	by	one	at	each	
step.	

• We	start	with	1	cluster	and	end	with	N	clusters.
• Top	Down	approach

K-means
• K-means	clustering	was	developed	at	Bell	Labs	(the	
home	of	UNIX,	C,	C++	and	several	scripting	shells).

• The	idea	is	to	choose	cluster	centers,	(initialize	step)	
and	assign	each	data	point	to	the	cluster	based	on	
proximity			to	the	cluster	centre;	then	re-calculate	
the	cluster	centres and	re-assign	the	cluster	
memberships.	Stop	when	assignments	don’t	change.	
Note	this	is	a	heuristic;	there	is	no	guarantee	that	the	
optimum	is	found.

Fuzzy	Clustering
• A	data	point	may	belong	to	more	than	one	cluster
• The	Fuzzy	c-means	algorithm
• There	is	a	parameter	m	called	fuzzifier.	In	the	
limit,	it	is	similar	to	k-means.

• The	distance	of	each	data	point	to	the	cluster	
centre is	computed,	and	the	nearer	it	is	to	a	given	
cluster	centre,	the	higher	is	its	membership	
weight	for	the	cluster.	These	weights	are	
normalized	so	that	they	sum	to	1.

Appendix	2:	Gaussian	Mixture	Models

• We	mentioned	Gaussian	Mixture	Models;	here	is	an	example	on	how	to	fit	a	
mixture	of	two	Gaussian	distributions	to	an	observed	set	of	points.

• The	algorithm	used	is	called	EM		Algorithm	(Expectation	Maximization)	and	
it	is	essentially	an	application	of	Bayes’	Theorem.

• This	example	is	based	on	:	Gaussian	Mixture	Models	and	Introduction	to	
HMM’s	(Michael	Picheny,	Bhuvana Ramabhadran,	Stanley	F.	Chen)	,	

• We	wrote	the	MATLAB	code	to	estimate	the	model	and	the	R	code	to	plot	
the	diagrams	and	is	included	in	the	appendix.

• Suppose	you	have	the	following	10	points	and	we	want	to	fit	a	mixture	of	
two	Gaussian	distributions,	N1	(μ1	,	σ1)	and	N2	(μ2 ,	σ2)	along	with	the	
probability		p1 that	a	point	comes	from	N1	(and	probability	p2 =1- p1 that	the	
point	is	drawn	from	N2).	

• Data	=	8.4,	7.6,	4.2,	2.6,	5.1,	4.0,	7.8,	3.0,	4.8,	5.8

8

Using	Expectation	Maximization	to	fit	GMM

• To	find		the	probability		observing	a	given	point	x,	we	need	to	sum	
over	all	possible	values	of	hidden	variable	h,	which	can	be	1	or	2	
(indicating	from	which	distribution	the	point	x	comes	from).

• Start	with	initial	estimates:	p1 = p2 =	0.5; μ1	=	4,	μ2 =	7,	σ1 2	=	σ2 2	=	1

• 𝑃(𝑥)=∑ 𝑃(𝑥, ℎ))*+
)*, =		∑ 𝑃 𝑥 ℎ 𝑃(ℎ))*+

)*,
• For	each	data	point	xi	,	assign	single	hidden	value	ℎi.
• ℎi	=	arg𝑚𝑎𝑥ℎ 𝑃	(h)	𝑃 𝑥𝑖 ℎ

• Identify	GMM	component	generating	each	point.
• Update	parameters	in	𝑃(ℎ), 𝑃(𝑥|ℎ)	by	simply	counting	and	

normalizing	to	get	MLE	for	𝜇𝑗	, 𝑗	, 𝜎𝑗	.

• Posterior	prob									𝑃˜(ℎ|𝑥𝑖) 	= 	 P(h,xi)
∑ P(h,xi)�
:

.

9

GMM:		Parameters	after	each	Iteration
• After	only	a	few	iterations,	the	algorithm	converges	to	the	following	parameter	

estimates: p1 =0.7, μ1	=4.22,	σ1 2	=1.13;		and	p2 =	0.3,	μ2 =	7.93	,	σ2 2	=	0.12
• The	intermediate	values	of	the	parameters	at	each	iteration	are	shown	in	the	table	

below.	The	next	few	figures	show	the	distributions	plotted	at	some	of	the	
iterations.

10

Iteration p1 μ1 σ1 2	 p2 μ2 σ2 2	

1 0.59 3.98 0.92 0.41 7.29 1.29

2 0.62 4.03 0.97 0.38 7.41 1.12

3 0.64 4.08 1.00 0.36 7.54 0.88

4 0.66 4.14 1.05 0.34 7.69 0.59

5 0.69 4.19 1.10 0.31 7.85 0.28

6 0.70 4.22 1.13 0.30 7.93 0.12

7 0.70 4.22 1.13 0.30 7.93 0.12

8 0.70 4.22 1.13 0.30 7.93 0.12

9 0.70 4.22 1.13 0.30 7.93 0.12

10 0.70 4.22 1.13 0.30 7.93 0.12

GMM	Figure	using	Initial	Parameters

11

GMM-Figure	after	iteration	1

12

GMM	figure	after	Iteration	2

13

GMM	figure	after	iteration	3	

14

GMM- Final	Figure	after	Iteration	10

15

MATLAB	code	to	fit	the	GMM

p1	=	0.6;			p2	=	1-p1;		
mu1=	mean(x)*1.1	;	mu2	=	mean(x)	*	0.9;	
sigsqr1=var(x)	*1.1;				sigsqr2=var(x)*0.9;
numpoints=length(x);	numiters=10;
for	i=1:numiters
if	i==1
prob=[p1	p2];				mu=	[mu1	mu2];					sigsqr=[sigsqr1	sigsqr2];		sigma_1_sqrd=sigsqr(1);			sigma_2_sqrd=sigsqr(2);

else
prob=[p1_hat(i-1)		p2_hat(i-1)];	mu=[mu1_hat(i-1)	mu2_hat(i-1)];	sigma_1_sqrd=sig1sqr_hat(i-1);sigma_2_sqrd=sig2sqr_hat(i-1);
p1_hat(i-1);

end
a1	=	normpdf(x,mu(1),sqrt(sigma_1_sqrd));
b1	=	normpdf(x,mu(2),sqrt(sigma_2_sqrd));
P1N1_1	=	prob(1)*a1		;				P2N2_1		=	prob(2)*	b1	;
Pxi=	P1N1_1+P2N2_1		;
prob_1_given_xi	=	P1N1_1./Pxi ;				prob_2_given_xi	=	P2N2_1./Pxi ;
p1_hat(i)=sum(prob_1_given_xi)/(sum(prob_1_given_xi)+sum(prob_2_given_xi))							;
p2_hat(i)=	sum(prob_2_given_xi)/(sum(prob_1_given_xi)+sum(prob_2_given_xi))									;
xi_prob_1_given_xi=x.*prob_1_given_xi			;				xi_prob_2_given_xi	=	x.*prob_2_given_xi	;

mu1_hat(i)=sum(xi_prob_1_given_xi)/sum(prob_1_given_xi);
mu2_hat(i)=sum(xi_prob_2_given_xi)/sum(prob_2_given_xi);
rep_mu1=	repmat(mu1_hat(i),numpoints,1);		rep_mu2=	repmat(mu2_hat(i),numpoints,1);
centred_x_sqr_prob_1_given_xi	=	(x-rep_mu1).^2	.*	prob_1_given_xi		;
centred_x_sqr_prob_2_given_xi	=	(x-rep_mu2).^2	.*	prob_2_given_xi		;
sig1sqr_hat(i)=sum(centred_x_sqr_prob_1_given_xi)/sum(prob_1_given_xi)	;

sig2sqr_hat(i)=sum(centred_x_sqr_prob_2_given_xi)/sum(prob_2_given_xi)	;
end

16

R	code	to	plot	the	GMM	figures

• g1	=	cbind(c(4,1),c(3.98,0.92),c(4.03,0.97),c(4.08,1.00),c(4.22,1.13));
• g2	=	cbind(c(7,1),c(7.29,1.29),c(7.41,1.12),c(7.54,0.88),c(7.93,0.12));
• for	(t	in	1:ncol(g1))
• {
• x<-seq(0,10,length=200)
• s1	=	sprintf("mean(s1):	%.2f,	var(s1):	%.2f",	g1[1,t],g1[2,t])
• s2	=	sprintf("mean(s2):	%.2f,	var(s2):	%.2f",	g2[1,t],g2[2,t])
• y<-dnorm(x,mean=g1[1,t],	sd=sqrt(g1[2,t]))
• y2<-dnorm(x,mean=g2[1,t],	sd=sqrt(g2[2,t]))
• matplot(x,	cbind(y,y2),type="l",ylab=	"pdf(x)",col=c("blue","blue"),lty=c(1,2),	lwd =	c(2,2))
• title("GMM")
• par(xpd=TRUE)
• legend("topleft",	cex=0.6,	inset=.05,	legend=c(s1,	s2),	lwd=c(2.5,2.5),lty=c(1,2),	col=c("blue","blue"))
• points(8.4,0,	pch=21,	bg="red")
• points(7.6,0,pch=21,	bg="red")
• points(4.2,0,pch=21,	bg="red")
• points(2.6,0,pch=21,	bg="red")
• points(5.1,0,pch=21,	bg="red")
• points(4.0,0,pch=21,	bg="red")
• points(7.8,0,pch=21,	bg="red")
• points(3.0,0,pch=21,	bg="red")
• points(4.8,0,pch=21,	bg="red")
• points(5.8,0,pch=21,	bg="red")
• }

17

Appendix-3:	Support	Vector	Machines	

§ The	Support	Vector	Machine	(SVM)	is	a	technique	for	classification	and	regression.	
Originally	the	SVM	was	devised	for	binary	classification,	or	classifying	data	into	two	
types.	Generalization	when	there	are	more	than	two	classes	is	relatively	
straightforward.	

§ For	linearly	separable	data,	SVM	finds	optimal	decision	boundary	using	a	linear	
decision	surface.	When	working	with	non-linearly	separable	data	in	the	original	
space,	SVM	maps	the	patterns	to	a	higher	dimensional	feature	space	in	which	the	
transformed	data	becomes	linearly	separable.	This	conversion	can	be	done	using	
kernel	function,	and	the	commonly	used	kernels	functions	are	listed	below:

§ Solution	to	SVM	can	be	formulated	as	a	Quadratic	Programming	Problem.	It	can	be	
easily	implemented	by	most	of	the	popular	statistical	languages	(MATLAB,	R,	etc.)	or	
packages	(LibSVM).	

18

Name of Kernel Function Definition
Linear () TK =u, v u v
Polynomial of degree d () (1)T dK = +u, v u v
Gaussian Radial Basis Function (RBF)

11[() ()]

2()
T

K e
-- S

=
u-v u-v

u, v
Sigmoid () tanh[]TK b= +u, v u v

SVM	and	Linear	Separation

19

Ø Red	Asterisk	markers	and	Blue	Plus	markers	are	patterns	
belonging	to	Class	1	and	2	respectively.	Each	of	the	three	
Straight	Lines	can	separate	the	test	patterns.	This	is	an	
example	of	Linear	Separation.

SVM	and	Linear	Discrimination

20

• Consider	the	function	g(x)=wTx +	b.
• If	wTx +	b>=0,	classify	x as	belonging	to	class	1
• If	wTx +	b<0,			classify	x as	belonging		to	class	2
• In	the	case	of	two-dimensional	x	and	w, wTx +	b=0	 defines	a	

straight	line.	Points	on	one	side	of	this	straight	line	will	be	
classified	as	belonging	to	class	1;	points	on	the	other	side	of	
this	line	will	be	classified	as	belonging	to	class	2.	

• But	there	are	an	infinite	number	of	straight	lines	that	can	
linearly	separate	the	data	points;	we	can	simply	vary	b	to	get	
parallel	lines	that	will	do	the	job.	So	we	need	to	determine	
the	"best"	or	optimal	w and	b

SVM	and	Maximum	Margin	Separation

21

• To	choose	"good"	w	and	b,	we	measure	the	distance	r(x)	of	x	from	
the	decision	surface	g(x)=0.	The	distance	r,	of	a	point	x	from	the	
plane	P	specified	by	(w,	b)	is	

r(x;w,b)	=	|g(x)|/||w||	=	|wTx +	b|/||w||

• When	we	talk	of	the	distance	from	a	point	to	a	plane	we	mean	the	
distance	from	x	to	the	nearest	point	xp that	lies	on	the	plane	P.	The	
margin	of	separation,	M,	measures	the	distance	between	the	two	
classes;	M=2/||w||

• The	optimal	separating	hyperplane separates	the	two	classes	and	
maximizes	the	distance	to	the	closest	point	from	either	class.	This	
provides	a	unique	solution	to	the	separating	hyperplane problem.	
By	maximizing	the	margin	between	the	classes,	it	leads	to	better	
classification.

SVM	and	Maximal	Margin	illustrated-1

22

Separating	Hyperplane (solid	line)	with	Narrower	Margin.	Margin	is	the	distance	between	the	dotted	lines

SVM	and	Maximal	Margin	Illustrated-2		

23

Separating	Hyperplane (solid	magenta	line)	with	Wider	Margin.	Margin	is	the	distance	between	the	dotted	lines

SVM	and	the	Kernel	Trick

24

§ SVM’s	will	use	a	non-linear	function	to	map	the	training	
vectors	or	data	points	into	a	higher	dimensional	space.	

§ This	higher	dimensional	space	is	called	the	Feature	
Space.	

§ We	can	then	find	and	use	a	linear	decision	surface	in	the	
feature	space,	and	this	allows	for	non-linear	separation	in	
the	original	space.

§ In	our	example,	we	used	the	mapping	Ψ to	map	the	two	
dimensional	pattern	space	to	a	three	dimensional	feature	
space.

SVM	and	non-linear	separation	using	
kernel	to	map	to	higher	dimension

25

Mapping	to	Higher	Dimensional	Feature	Space	Using	RBFs	Permits	Non-Linear	Separation.

MATLAB	code	for	SVM	(previous	example)

26

Multi-class	Classification	by	SVM’s

qThe	two	simple	approaches	are
q One	vs	All	(OVA)	:	Build	K	“one	vs	all”		classifiers	and	
choose	the	class	which	classifies	the	test	datum	with	
greatest	margin.	One	vs	Rest	would	have	been	a	more	
appropriate	name.

q All	vs	All		(AVA)	:	Build	K(K-1)/2	pairwise	binary	classifiers		
and	choose	the	class	that	is	selected	by	the	most	
classifiers.	One	vs	One	would	have	been	a	more	fitting	
name.

qAVA	is	often	faster	even	though	it	has	O(N2)	classifier

qAnother	approach	is	a	structural		SVM	which	will	not	be	
described	today.

27

Appendix	4:Informal	Description	of	
Hidden	Markov	Models		

• Suppose	we	have	a	set	of	N urns,	each	with	balls	of	M
colours	in	different	proportions.	According	to	some	random	
process,	I	randomly	choose	an	urn	and	then	select	a	ball	
from	this	urn	with	replacement.	You	get	to	see	the	colour	
of	the	ball	but	not	which	urn	the	ball	comes	from.	Then,	I	
choose	another	urn	and	select	another	ball.	The	process	is	
repeated.

• This	is	a	Hidden	Markov	Model.	The	urns	are	the	"hidden	
states"	and	the	colours	of	the	balls	are	the	"observed	
signals".	A	Markov	chain governs	the	successive	choices	of	
the	urns,	i.e.,	the	transition	matrix	of	the	Markov	chain	
dictates	the	choice	of	the	urns.	

Informal	Description	of	Hidden	Markov	
Models	(2)

The	main	characteristics	of	an	HMM	are
• The	N hidden	states.
• The	M distinct	types	of	observations,	which	are	the	
colours	of	the	balls	in	this	example.	We	could	have	had	
continuous	valued	observations	of	course.

• The	state	transition	probability	matrix	A =	{a jk}	giving	
the	conditional	probability	that	we	are	in	state	k at	
time	(t+1)	given	that	we	were	in	state	j at	time	t,	i.e.,	
ajk=	P[Qt+1=	Sk|	Qt=	Sj],
where	S	and	Q	are	both	used	for	denoting	the	states;	
S1,	S2,…,	SN	are	the	N states	and	Qt is	the	state	at	time	t.

Informal	Description	of	Hidden	Markov	
Models	(3)

• The	probability	distribution	of	the	observations,	conditional	on	a	
state.	In	our	example,	this	is	the	conditional	probability	of	choosing	
a	ball	of	a	given	colour,	after	the	urn	has	been	selected.	Bjv =	
probability	of	observing	a	ball	of	v-th colour	from	the	j-th urn.

• The	initial	state	distribution	Π,	which	is	the	probability	distribution	
governing	the	initial	choice	of	the	states.	The	probability	that	the	j-
th urn	is	the	first	urn	to	be	selected	is	Πj.

• Together,	these	parameters	are	denoted	by	λ in	the	literature.

The	Three	Basic	Problems	for	HMM

• 2.1	Evaluation	Problem.	Given	the	parameters	of	an	HMM,	i.e.	
given	λ, calculate	the	probability	of	realisation	of	a	sequence	of	
observations	O.	(Forward-Backward	algorithms)
– That	is,	compute	P[O|λ]

• 2.2	Decoding	or	Classification	Problem.	Given	an	observation	
sequence	O,	find	the	sequence	of	hidden	states	most	likely	to	have	
occurred.	That	is,	compute		
– argmax P[Q|O]	
– Q	where			Q =	q1,	q2,…,	qT is	the	series	of	states	indexed		by	time.	

(Viterbi Algorithm)
• 2.3	Estimation	or	Training	Problem. Given	a	sequence	of	

observations,	fit	the	HMM.	That	is	estimate	λ =	(A,	B,	Π) the	
parameters	of	the	HMM,	that	maximize	P[O|λ].	(Baum-Welch	
Algorithm,	a	type	of	EM	algorithm)	

Appendix	5:	What	is	a	Neural	Network	
(NN)?

32

§ Traditional	NN	uses	a	feedforward	network	
structure	and	usually	has	only	one	layer.	
Compared	with	Deep	Neural	Network,	its	
structure	is	simpler	and	the	training	is	less	
computationally	intensive.	

§ NN	is	useful	when	we	have	abundance	of	labeled	
data	but	without	the	knowledge	of	the	underlying	
mapping	function	that	generates	the	output.	It	
also	shines	when	data	sets	are	noisy	or	containing	
missing	variables.	

§ To	train	a	NN,	we	first	acquire	labeled	inputs	(as	
high-dimensional	vector)	and	outputs.	We	then	
design	the	structure	of	the	network,	such	as	
number	of	layers	and	number	of	neurons	in	each	
layer.	The	formal	training	process	starts	with	
random	initialization	and	feedforward	and	
backpropgation.		

What	is	a	Neural	Network		REALLY	?

qThere	has	been	lot	of	hype	surrounding	Neural	
Networks,	including	exaggerated	comparisons	to	
human	brain.	This	led	to	very	high	expectations	
which	were	not	met,	leading	to	disappointment	with	
Neural	Networks	and	AI	for	decades.

qThink	of	a	Neural	Network		simply	as	a	two	stage,	
non-linear	statistical	model		used	for	classification	or	
regression.

33

The	Simplest	Neural	Network:	
Perceptron

q The	simplest	neural	network	is	described	as	a	single	hidden	layer	back-propagation	network.	 There	
are	N input	nodes,	one	for	each	entry	in	the	input	feature	vector,	followed	by	only one	layer in	the	
network	with	just	a single	node in	that	layer.	There	exist	connections	and	their	corresponding	
weights, from	the	input ‘s	to	the	single	output	node	in	the	network.	This	node	then	takes	the	
weighted	sum	of	inputs	and	applies	a step	function to	determine	the	output	class	label.	The	
Perceptron	outputs	either	a 0 or	a 1— 0 for	class	#1	and 1 for	class	#2;	thus,	in	its	original	form,	the	
Perceptron	is	simply	a	binary,	two-class	classifier.	Perceptron	is	a linear	classifier;	it	cannot	solve	
non-linear	problems	such	as	XOR.

34

Multilayer	Feed	Forward	Neural	Network		

q In	order	to	obtain	non-linear	separability,	we	can	usemulti-
layer feedforward	networks	with non-linear	activation	
functions.

q A	multi-layer	feedforward	network	consists	of	multiple	layers:	
1	input	layer, N hidden	layers,	and	1	output	layer;	in	our	figure	
we	have	one	input	layer,	a	hidden	layer	and	an	output

35

Neural	Network	and	Softmax	Regression

qIn	order	to	obtain	non-linear	separability,	we	can	
usemulti-layer feedforward	networks	with non-
linear	activation	functions.

qThe	output	of	the	hidden	layer	is	fed	to	a	Softmax	
function,	as	in	a	multinomial	logistic	regression	
function.

36

Gradient	Descent	and	Neural	Network	
Training

§ The	bottom	of	the	bowl	is	the	minimum	loss,	or		the	
best	set	of	model	parameters	or	in	case	of	a	neural	
network,	the	“weights	

§ The	objective	is	to	reach	the	bottom,	taking		as	few	
steps	as	possible…

37

Stochastic	Gradient	Descent

q In	the	original	Gradient	Descent	scheme,	all	training	
examples	are	shown,	the	error	calculated,	and	then	we	
find	gradients	with	respect	to	weights.

qThis	is	called	“batch”	gradient	descent	but	is	very	slow.
qAnother	approach	is	to	show	one	example,	compute	
error	and	gradients,	update	weights…	this	faster	but	
noisy

qStochastic	Gradient	– randomly	choose	a	subset	of	the	
training	examples	(called	“mini-batch”)	for	each	epoch.	
This	is	better	than	choosing	one	example	each	epoch

38

Illustrating	Gradient	Descent	for	Training	a	
Simple	Model

§ We	can	work	through	a	simple	example	of	how	gradient	
descent	can	be	used	to	train	a	linear	regression	model.	

§ Although	the	use	Gradient	Descent	is	not	necessary	here,	it	
serves	as	an	illustration

§ Here	are	the	data

39

x y
1 1

2 3

4 3

3 2

5 5

Illustrating	Gradient	Descent	-2
Ø In	a	simple	linear	regression,	the	model	is y=	b0+	b1x
Ø Initialise both	model	parameters	to	0.
Ø The	model	becomes		y	=	0.0	+	0.0	*	x
Ø Calculate	the	predicted	value	for	y	using	our	starting	point	coefficients	for	the	first	training	

instance:	i=1,	data(i)	is		x=1,	y=1
• Prediction,	p(i)	=	b0+	b1x(1)=0
• Error(i)	=	p(i)- y(i)	=	b0+	b1x(1)	– 1	=	0-1	=	-1

• The	loss	function	is	L	=	,
+
∗(prediction	- target)	2

• Partial	derivative	of	Error	w.r.t.	b0 is	1	and	w.r.t.	b1,	it	is	x	

40

Illustrating	Gradient	Descent	-3

§ Keeping	in	mind	what	we	just	derived,	and	deciding	to	use	a	parameter	α	to	
control	how	big	a	step	we	want	to	take	in	the	direction	of	the	gradient,	we	see	
that

• b0(t+1)	=	b0(t)	– α*	error	
• and
• b1(t+1)	=	b1(t)	– α*	error	*x
• b0(t+1)	=	0.0	– 0.01	*	-1.0	=	0.01
• b1	(t+1)	=	0.0	– 0.01	*	-1	*	1=0.01
§ We	finished	one	epoch.	After	20	iterations,	we	have	b0	as	0.23	and	b1		as	0.79	

(actual	values	are	0.4	and	0.8)

41

Example	of	Gradient	Descent	in	Action	-4

• When	we	use	these		parameters	to	make	pass	the	values	of	x	through	the	model	and	
output	the	predicted	values,	here	is	what	we	get.

42

Appendix	6:	Backpropagation	Algorithm		
explained	in-depth

• The	backpropagation	algorithm	is	a	common	method	for	
training	a	neural	network

• Overview:	Let		use	a	neural	network	with	two	inputs,	two	hidden	
neurons,	two	output	neurons.	Additionally,	the	hidden	and	output	
neurons	will	include	a	bias.

• Here’s	the	basic	structure:

43

i2

i1 h
1

o
1

o
2

h
2

11

w1 w5

w8w4

w3 w7

b1 b2

w6w2

The	Backpropagation	Algorithm	Illustrated-2

Ø In	order	to	have	some	numbers	to	work	with,	here	are	the initial	weights, the	biases,	and training	
inputs/outputs:

44

The	goal	of	backpropagation	is	to	optimize	the	weights	so	
that	the	neural	network	can	learn	how	to	correctly	map	
arbitrary	inputs	to	outputs.

For	the	rest	of	this	presentation	we’re	going	to	work	with	a	
single	training	set:

• Given	inputs	0.05	and	0.10

• We	want	the	neural	network	to	output	0.01	and	0.99.
The	Forward	Pass
• To	do	this	we’ll	feed	those	inputs	forward	though	the	

network.
• We	figure	out	the total	net	input to	each	hidden	layer	

neuron, squash the	total	net	input	using	an activation	
function (here	we	use	the logistic	function),	

• Repeat	the	process	with	the	output	layer	neurons.

.20w2

i2

i1 h1 o1

o2h2

11

.15w1 .40w5

.55w8.30w4

.25w3 .50w7

b1.35 b2.60

.45w6

.99

.01

The	Backpropagation	Algorithm-The	
Forward	Pass	(Equation)

45

q Calculating		the	total	net	input	for		h1

net@, = w, ∗ i, + w+ ∗ i+ + b, ∗ 1
net@,=	0.15*0.05+0.2*0.1+0.35*1=0.3775

q We	then	squash	it	using	the	logistic function	to	get	the	output	of	h,	
𝑜𝑢𝑡),=	

,
,PQRSTU:V

= ,
1+WRX.YZZ[=	0.593269992

q Carrying	out	the	same	process	for		h+	
𝑜𝑢𝑡)+=0.596884378

q We	repeat	this	process	for	the	output	layer	neurons,	using	the	output	from	the	hidden	layer	neurons	as	inputs.
q Here’s	the	output	for	o,
neta,=	0.4*0.593269992+0.45*0.596884378+0.6*1=1.105905967

net@, = wb ∗ out@, + wd ∗ out@+ + b+ ∗ 1

outa, =
,

,PWRefgXV
=	 ,
,PWRV.VX[hX[hiZ

=	0.75136507

q And	carrying	out	the	same	process	for o2 we	get
outa+	=	0.772928465

Backpropagation:	Calculating	the	Total	
Error-contd.

46

o we	can	now	calculate	the	error	for	each	output	neuron	using	the		squared	
error	function	and	sum	them	to	get	the	total	error:

• 𝐸klkmn=∑
,
+
�
� (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)+

o The	is	included	so	that	exponent	is	cancelled	when	we	differentitate later	
on.	The	result	is	eventually	multiplied	by	a	learning	rate	anyway	so	it	
doesn’t	matter	that	we	introduce	the	constant	here.

o For	example,	the	target	output	for	𝑜,is	0.01but	the	neural	network	output	
0.75136507,	therefore	its	error	is	:

• 𝐸l,=
,
+
(𝑡𝑎𝑟𝑔𝑒𝑡a,−𝑜𝑢𝑡a,)+=

,
+
(0.01−0.75136507)	+=0.274811083

o Repeating	this	process	for	o2	(remembering	that	the	target	is	0.99)	we	get
• 𝐸l+=0.023560026
o The	total	error	for	the	neural	network	is	the	sum	of	these	errors:
• 𝐸klkmn=𝐸a, +𝐸a+ =	0.274811083+0.023560026=0.298371109

The	Backpropagation	Algorithm	:The	
Backwards	Pass

47

o Goal	with	backpropogation is	to	update	each	of	the	weights	in	the	network	so	that	they	
cause	the	actual	output	to	be	the	closer	the	target	output.

o Thereby	minimizing	the	for	each	output	neuron	and	the	network	as	a	whole.
Output	layer

o Consider	𝑤b.	How	much	a	change	in	𝑤b affects	the	total	error	aka	
uvUwUxy
uz[

.

o
uvUwUxy
uz[

is	read	as	“	the	partial	derivative	of	𝐸klkmn with	respect	to	𝑤b. You	can	also	say	that	“	
the	gradient	with	respect	to	𝑤b.”

By	applying	the	chain	rule	we	know	that:
Ø Visually,	here’s	what	we’re	doing	

𝑛𝑒𝑡a, 𝐸a, = 1/2(𝑡𝑎𝑟𝑔𝑒𝑡a, − 𝑜𝑢𝑡a,)+

𝐸klkmn=𝐸a, + 𝐸a+

𝜕𝑛𝑒𝑡a,
𝜕𝑤b

∗
𝜕𝑜𝑢𝑡a,
𝜕𝑛𝑒𝑡a,

∗
𝜕𝐸klkmn
𝜕𝑜𝑢𝑡a,

=
𝜕𝐸klkmn
𝜕𝑤b

w5

w6

b2

Output	h2

Output	h1

𝑜𝑢𝑡a,

48

• First,	how	much	does	the	total	error	change	with	respect	to	the	output?

• 𝐸klkmn =
,
+
(𝑡𝑎𝑟𝑔𝑒𝑡a, − 𝑜𝑢𝑡a,)++

,
+
(𝑡𝑎𝑟𝑔𝑒𝑡a+ − 𝑜𝑢𝑡a+)+

• uvUwUxy
ul~kXV

=	2*	,
+
(𝑡𝑎𝑟𝑔𝑒𝑡a, − 𝑜𝑢𝑡a,)+�, *-1+0

• uvUwUxy
ul~kXV

=-(𝑡𝑎𝑟𝑔𝑒𝑡a, − 𝑜𝑢𝑡a,)=-(0.01-0.75136507)=0.74136507

• -(target-out)	is	sometimes	expressed	as	out-target
• When	we	take	the	partial	derivative	of	the	total	error	with	respect	to	𝑜𝑢𝑡a,,the	

quantity	,
+
(𝑡𝑎𝑟𝑔𝑒𝑡a+ − 𝑜𝑢𝑡a+)+ becomes	zero	because	𝑜𝑢𝑡a, does	not	affect	it	

which	means	we’re	taking	the	partial	derivative	of	a	constant	which	is	zero.
• Next,	how	much	does	the	output	of	o1 change	with	the	respect	to	its	total	net	

output	?

The	Backwards	Pass:	Understanding	the	
each	piece	of	Equation

Understanding	the	each	piece	of	Equation	
(contd..)

49

• The	partial	derivative	of	the	logistic	function	is	the	output	
multiplied	by	1	minus	the	output:

• Outo1= ,
,PQRSTUwV

• ul~k	l	,
u�Qkl,

= outo1 (1-outo1)=0.7513650(1-
0.75136507)=0.186815602

• Finally	how	much	does	the	total	net	input	of	change	with	
respect	to	w5?

50

Understanding	the	each	piece	of	Equation	(contd..)
• Putting	it	all	together

• uvUwUxy
uz[

=	0.74136507*0.186815602*0.593269992=0.082167041
• You’ll	often	see	this	calculation	combined	in	the	form	of	the	delta	form:
• uvUwUxy

uz[
=	-(𝑡𝑎𝑟𝑔𝑒𝑡a, − 𝑜𝑢𝑡a,)*𝑜𝑢𝑡a, (1-𝑜𝑢𝑡a,)*𝑜𝑢𝑡),

• Alternatively,	we	have	uvUwUxy
ul~kXV

and	ul~kXV
u�QkXV

which	can	be	written	as	uvUwUxy
u�QkXV

aka		𝛿a,.
• (the	Greek	letter	delta)	aka	the	node	delta.	So	we	can	use	this	to	rewrite	the	calculation	

above:
• δo1=-(targeto1-outo1)*outo1 (1-outo1)*outh1
• Therefore,
• uvUwUxy

uz[
=δo1outh1

• Some	sources	extract	the	negative	sign	from	δ so	it	would	be	written	as:
• uvUwUxy

uz[
=-δo1outh1

51

Understanding	the	each	piece	of	
Equation	(contd..)

o To	decrease	the	error	we	then	subtract	this	value		from	this	current	weight	
(optionally	multiplied	by	some	learning	rate	data	,eta,	which	we’ll	set	to	0.5):

𝑤bP = 𝑤b − Ƞ ∗
𝜕𝐸klkmn
𝜕𝑤b

= 0.4 − 0.5 ∗ 0.082167041 = 0.35891648

o Some	sources	use	α (alpha)	to	represent	the	learning	rate,	others	use	Ƞ (eta)	and	
others	even	use	Ε (epsilon).

𝑤dP=0.408666816
𝑤�P=0.511301270
𝑤�P=0.0561370121
We	perform	the	actual	updates	in	the	neural	network	after	w	have	the	new	weights	
leading	into	the	hidden	layer	neurons	(i.e.	we	use	the	original	weights,	not	the	
updated	updates	,	when	we	continue	the	backpropogation algorithm	below).

52

Understanding	the	each	piece	of	Equation	(contd..)
Hidden	Layer
Next,	we’ll	continue	the	backwards	pass	by	calculating	new	valued	for	𝑤,,𝑤+,	𝑤� and	
𝑤�.
𝜕𝐸klkmn
𝜕𝑤,

=
𝜕𝐸klkmn
𝜕𝑜𝑢𝑡),

∗
𝜕𝑜𝑢𝑡),
𝜕𝑛𝑒𝑡),

∗
𝜕𝑛𝑒𝑡),
𝜕𝑤,

𝜕𝐸klkmn
𝜕𝑜𝑢𝑡),

=
𝜕𝐸a,
𝜕𝑜𝑢𝑡),

+
𝜕𝐸a+
𝜕𝑜𝑢𝑡),

Ea,

Ea+

E����� = Ea, + Ea+

b2b1

w1

h1

i1 Net		

h2i2

11

out

Understanding	the	each	piece	of	Equation	
(contd..)

We’re	going	to	use	a	similar	process	as	we	did	for	the	outer	layer	but	slightly	different	to	account	for	the	fact	
that	the	output	each	hidden	layer	neuron	contributes	to	the	output	(therefore	error)multiple	output	neurons.	
We	know	that	𝑜𝑢𝑡), affects	both	𝑜𝑢𝑡a, and	𝑜𝑢𝑡a+ and	therefore	the	

uvUwUxy
ul~k:V

needs	to	take	into	consideration	its	
effects	on	the	both	output	neurons:
§ Starting	with	 uvwV

ul~k:V
:

§ We	can	calculate	 uvwV
u�Qk:V

using	values	we	calculated	earlier:

§ And	u�QkwV
ul~k:V

is	equal	to	𝑤b:
§ 𝑛𝑒𝑡a,=𝑤b*𝑜𝑢𝑡),+𝑤d*𝑜𝑢𝑡)++𝑏+*1
§

u�QkwV
ul~k:V

=	𝑤b=0.40
§ Plugging	them	in:
§ Following	the	same	process	for	 uvw�

ul~kwV
we	get

§
uvw�
ul~k:V

=0.019049119

53

54

Understanding	the	each	piece	of	Equation	
(contd..)

Therefore,

• Now	that	we	have	uvUwUxy
ul~k:V

we	need	to	figure	out	ul~k:V
u�Qk:V

and	then	
u�Qk:V
uz

for	each	weight.

• ul~k:V
u�Qk

=𝑜𝑢𝑡), (1-𝑜𝑢𝑡),)	=	0.59326999(1-
0.59326999)=0.241300709

• We	calculate	the	partial	derivative	oh	the	total	net	input	h1 with	the	
respect	to	𝑤, the	same	as	we	did	for	the	output	neuron:

• 𝑛𝑒𝑡),=	𝑤, ∗ 𝑖, + 𝑤+ ∗ 𝑖+ + 𝑏, ∗ 1
• u�Qk:V

uzV
=𝑖,=0.05

• Putting	it	all	together

• uvUwUxy
uzV

=0.036350306*0.241300709*0.05=0.000438568

55

Understanding	the	each	piece	of	Equation	
(Conclusion)
We	can	now	update	𝑤,:

• 𝑤,P=𝑤,-Ƞ*
uvklkmn
uz,

=0.15-0.5=0.000438568=0.149780716

• Repeating	this	for	𝑤+,𝑤�	and	𝑤�:
• 𝑤+P=0.19956143
• 𝑤�P=0.24975114
• 𝑤�P=0.29950229
• Finally,	we’ve	updated	all	our	weights!
• When	we	fed	forward	the	0.05and	0.1	inputs	originally,	the	error	on	the	network	on	

the	0.298371109.	after	this	first	round	of	backpropogation,	the	total	error	is	now	
down	0.2910227924.	it	might	not	seem	like	much,	but	after	repeating	this	process	
for	10,000	times,	for	example,	the	error	plummets	0.000035085.	At	this	time	when	
we	feed	forward		0.05and	0.1,	the	two	outputs	neurons	generate	0.015912196(vs	
0.01	target)	and	0.984065734(vs	0.99	target).

The	Backpropagation	Algorithm-
summary

56

A	brief		representation	of	the	back	propagation	algorithm:
1:	Initialize	all	weights	w	with	random	values
2:	Until	convergence:

2.1:	For	each	feature	vector	x	and	expected	output	y:
2.1.1:	Pass	x	through	the	network	and	obtain	the	output.
2.1.2:	Calculate	the	error	of	the	output	nodes.
2.1.3:	Calculate	the	error	at	hidden	nodes.
2.1.4:	Use	the	errors	to	compute		Delta	w_{i,j}
2.1.5:	Accumulate	the	errors	for	each	Delta	w_{i,j}

2.2:	Perform	learning	by	adding	the	accumulated	Delta	w_{i,j}	to	w_{i,	j}

Application	of	Hidden	Markov	Models

• The	majority	of	the	state-of-the	art	Automatic	Speech	Recognition	systems	employ	
HMM's.	More	recently,	HMM's	have	been	used	in	the	prediction	of	gene	sequences.	We	
first	describe	the	attempts	to	use	HMM's	to	model	phenomena	other	than	Speech.

• HMM's	have	been	used	in	modelling	daily	rainfall	in	a	city.	It	is	quite	common	to	use	the	
rainfall	data	for	each	day	of	the	year	going	back	several	years	to	compile	rainfall	
summary	statistics	like	average	rainfall	and	its	variability.	However,	some	questions	
regarding	rainfall	cannot	be	answered	unless	there	is	a	stochastic	model	for	the	rainfall-
generating	process.	

• E.g.,	we	may	ask	the	question	"What	is	the	probability	that	there	is	more	than	X	cm	of	
rainfall	in	a	given	week	and	the	longest	dry	run	is	no	longer	than	k	days?"	

• So	to	answer	a	question	like	the	one	we	posed,	one	would	fit	a	stochastic	model	to	the	
time	series,	and	then	simulate	generate	different	sample	paths	and	get	the	quantities	of	
interest	using	Monte	Carlo	methods.	A	good	model	will	capture	the	serial	relationship	
between	successive	observations.

• The	time	series	of	wet-dry	days	can	often	exhibit	persistence	or	anti-persistence.	After	
two	dry	days	in	Singapore,	it	is	quite	likely	we	get	rain	on	the	third	day.	This	type	of	
modelling	can	have	straightforward	and	useful	parallels	in	the	financial	markets.	

• Researchers	have	also	fit	HMM's	to	a	time	series	of	the	Old	Faithful	geyser's	waiting	
times	between	successive	eruptions and	duration	of	the	eruptions.

END	OF	Bonus	Material

• Thanks	for	your	patience

