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What Works… 



Qui Numerare Incipit Errare Incipit 

 

• He who begins to count, begins to err … 

• Title of an article by the great Oskar Morgenstern, founder of 
Game Theory along with von Neumann. 

• Niels Bohr said: It's tough to make predictions, especially 
about the future. 

• Don’t predict the past, it can be embarrassing if you are 
wrong! 

• We can study only the past, not the future… 



Statistical Paradoxes 

 
• The pop-behavioral finance & pop-psychology books  have had such 

a good run that most of us know all about various kinds of biases. 
 

• Anchoring, Frame Dependence, Mental Accounting, Availability 
Bias, Representativeness, Overconfidence, Self-Attribution Bias, 
Illusion of Control, Confirmation Bias, Hindsight Bias,  Recency Bias, 
the Winner’s Curse, Endowment effect, Status Quo Bias, Loss 
Aversion, Regret Avoidance,  Lottery Effect,… 
 

• However, there are some very important statistical biases related 
to sample selection that are less commonly talked about.  
 

• Theses biases can induce spurious correlations. 



Statistical Paradoxes and Fallacies 

 

• Statistical Paradoxes 

– Simpson’s Paradox 

– Berkson’s Paradox 

– Stage Migration or the Will Rogers’s Effect  

– Base Rate Neglect  

– Conservatism 

 

• The last two are related to the Bayes’ Rule. 



SMOKING INCREASES LONGEVITY:  
Simpson’s Paradox 

 

• Simpson's paradox: a reversal of the direction of  an 
association when data from several groups are combined to 
form a single group.  

– For example, When the data are examined as one group, the 
association between X and Y is positive, but when the data are 
split into groups based on some other characteristic, say W, the 
association between X and Y is negative. 

– This is a type of Omitted-Variable Bias (OVB) : occurs when a 
model  incorrectly leaves out one or more important causal 
factors. The  model compensates for the missing factor by over- 
or underestimating the effect of one of the other factors. 

 

 

 

 

 
 

 



SMOKING INCREASES LONGETIVITY:  
Simpson’s Paradox-2 

  

 

 

Yes No Yes No Yes No

Dead 27 12 51 40 29 101

Alive 103 66 64 81 7 28

Total 130 78 105 121 36 129

% Dying 20.80% 15.40% 48.60% 33.10% 80.60% 78.30%

Smoker ? Smoker ? Smoker ?

45-54 55-64 65-74

Age Group

Yes No

Dead 107 132

Alive 174 175

Total 281 307

% Dying 38.10% 43.00%

Smoker ?

Source: http://www.stat.osu.edu/~biostat/newsletters/volume2_2/article_vol2_2.html 
 



 
Why Are Handsome Men Such Jerks? 

Berkson’s Paradox 
  

• Title of a Slate article by the Wisconsin professor, Jordan Ellenberg 

 

• “you will date a man if his niceness plus his handsomeness exceeds some 
threshold. … So, among the men that you date,  the nicer ones are less 
handsome on average (and vice-versa), even if these traits are 
uncorrelated in the general population.” 

 

• This kind of selection bias is called Berkson’s Paradox. 

 

• Beware of this when using sum of two ranks to select a universe. 



 
Candidates Ranked on Handsomeness and 

Niceness 
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Scatter plot of selected boyfriends 

The black lines are regression lines. Data on left show no correlation.  
Negatively sloped regression line in right chart shows negative correlation. Only points above 
blue line can be selected, leading to sampling bias. 



Stage Migration 
Will Rogers Effect 

 
• Will Rogers remarked: When the Okies left Oklahoma and moved to California, 

they raised the average intelligence level in both states.  
 

• Improved techniques in detection of illness leads to some people being classified 
as “unhealthy” at an early stage. 
 

• Stage Migration is the name given to  this  movement of people from the set of 
healthy people to the set of unhealthy people. 
 

• This leads to the increase in average life span of both the healthy and unhealthy 
groups. 
 

•  Both lifespans are statistically lengthened, even if the patients did not live longer. 
 

•  Example : A={ 1,2,3} and B={4,5,6}. If we move 4 from set B to set A, the mean of 
both sets will increase. 
 

 
 



How a Quant Strategy Develops 

 
• Observation 

• Common place events 

• Unusual Events   

• How improbable are these unusual events and what can be learned from 
them? 

• Simplicity - Hemingway spent time forgetting tough words. 

• Not  too simple - Brain surgery is impossible with a pen knife. 

• We have already met the Omitted-Variable Bias. 



October 2014 

 

• In October 2014,  
 the world’s equity markets had a string of big negative days. 

  Many equity indices were in “correction” territory or down more than 
10%. And talks of bear markets were rampant.  

 And then the equity markets also had a string of positive days. 

 

• We could ask some questions: 
 What is the probability of a 1-day move>1%? 

 Or, drill down : in a bull market, what is the probability of a string of 
large 1-day moves 

 Or invert the question: 



Probability Inversions 

 
• Is it the case that bear markets have more large up days than bull 

markets? 

 

• Given that we saw a large number of big positive days, what is the 
probability we are in a bear market? 

 

• Examine Not  P many big positive days bull market  but 

                                P we are in a bear market many big positive days  ? 

 

Need to use Bayes’ Theorem 



Flaw of Averages  
November 2014 

 
• Title of book by Sam Savage,  son of the great statistician James Savage  

• James Savage wrote the famous book How to Gamble if You Must. 

• How a statistician could drown in a river that was “on average” only three feet 
deep. 

• In November 2014, The equity markets had a mind numbing dull sequence of 
days: 

 

 

 

 

 
 

• Average Volatility is moderate now. Use Gaussian Mixture model- very low 
volatility, very high high volatility and some medium volatility. 
 

6-Nov-14 2031.21

7-Nov-14 2031.92

10-Nov-14 2038.26

11-Nov-14 2039.68

12-Nov-14 2038.25

13-Nov-14 2039.33

14-Nov-14 2039.82



Biases related to Bayes’ Rule 

                                   P(X|D) =
P( X ∩ D ) 

P(D ) 
=

P D X ×P(X)

P(D)
 

Which yields 

 P(X|D) ∝ P D X × P(X) 
Where  

P(X|D) is the posterior probability 

P D X  is the likelihood 

P(X) is the prior probability  

 

• Two biases arise which are related to Bayes’ Rule 
– Base Rate Fallacy (ignoring the prior or underweighting it significantly) 

– Conservatism (slowness in revising our beliefs in the light of new 
information)  



Example 1: Boy-Girl paradox…  

 
• A new neighbor moves in next door. You learn that he has two children. 

 

• You see that one of the children is a boy. 

 

• What is the probability that the other child is a girl? 



Boy-Girl Paradox: using Bayes’ Theorem 

 
Cases: 
1. Both are girls (GG) :  P(GG) = 1/4,  
2. Both are boys (BB) : P(BB) = 1/4, 
3. One boy, one girl- two case, (GB)  and (BG)- with probability= (1/4)*2= 1/2  
 
 Now we add the additional assumption that "at least one is a boy" : call this  B.  
 
Using Bayes' Theorem, we find: 
 P(BB|B) = P(B|BB) · P(BB) / P(B)  
 
  P(B|BB) = probability of at least one boy given both are boys = 1  
  P(B)         = probability of at least one being a boy, which includes cases (2)  and (3) 
                        = 1/4 + 1/2 =3/4 
 

Finally,  P(BB|B) =   ( 1 * 1/4 )/ (3/4 )    = 1/3 

So the probability other child is a girl is 2/3 
  

 



Boy Girl Paradox… Intuitive Solution 

h 

Out of 3 possible cases with at least one boy, there are two cases with a girl- 

 𝑃𝑟𝑜𝑏(other child is a girl) = 
𝟐

𝟑
 



Application of Bayes’ Theorem in Finance 

 
• Black-Litterman Framework 

– In the Markowitz mean-variance optimization framework – the stocks or assets have a 
multivariate-normal distribution.  

 
– If we want to revise our estimates of return on individual stocks the proper way is to go 

through the variance-covariance matrix due to the correlations – i.e., to compute the 
distribution conditional upon our views. This is the Black-Litterman Framework. 

 
•  Bayes-Stein shrinkage:  We “shrink” stock beta towards unity. Very high values of beta are 

lowered somewhat, and very low values get increased. 
 

•   Less-Technical Example 
– Finance people and ordinary people are somewhat Bayesians without being conscious of it. 

For example, the research analysts revise their price targets based on the current or historical 
prices.  

– And any one who  takes into account the long term drift in equities is accounting for the base 
rate. For the S&P 500,  about 54% days are positive, as are about 60% months, 66% quarters 
and 75% years. 



Let’s Play a Game! 

 

• There are two boxes containing red and blue checkers.  
 

• Box 1 has 100 red and 50 blue checkers.  
 

• Box 2 has 50 red and 100 blue checkers. 



Let’s Play a Game: 2 

 

• We select a box at random 
 

• Assume there is 50% chance of 
either box being selected. 
 

• Sampling with replacement, we pull  
12 checkers out of this same box 
 

• Of the 12 checkers,  8 are red and 4 
are blue. 
 

• What is the chance we picked them 
from the second box? (the one with 
50 red and 100 blue checkers) 



Let’s Play a Game: Answer 

 

• The correct answer is 1/17, which is close to 6%. 

 

• It is difficult at first blush for most of us to guess this. 

– The prior probability of either box being selected is 50%. 

– When we see more red than blue checkers, we can assume there 
is a higher than 50% chance that they are drawn from box 1, 
which has  more red checkers. 

– so the chance of box 2 having been selected is  < 50%. 

– It is difficult to guess it is so much lower. 

 

• The human brain is very good at pattern recognition but poorly 
designed for computing probabilities, esp. conditional 
probabilities.  

 



Dangers of Chart Reading 

• Human eye-brain system is good at the cognitive task of 
comparing position along a common scale. 

• However, it is not so good at elementary perceptual tasks  
that involve making judgment 
about  length, area, shading, direction, angle, volume, 
and  curvature. 

• Source: William S. Cleveland and Robert McGill, “Graphical 
Perception: Theory, Experimentation and Application to the 
Development of Graphical Methods.” 

• Use of charts can be dangerous as we can fall prey to illusions. 



Three Optical Illusions 

Figure 1: The two tables have same length. 
Figure 2: The two orange circles have the same radius. 
Figure 3. The two lines of pixels which appear pink and 
red are of the exact same shade.  
Source: Eye Benders by Clive Gifford. 

Figure 1. 
Figure 2. 

Figure 3. 



Seemingly Useful But… 

 
• Are seemingly useful data sometimes useless?  

 

• Oskar Morgenstern wrote a book On the Accuracy of Economic Observations.  He 
discussed how officials decide economic policy based on Economic numbers  
based  on estimates have that very large standard errors.  Point estimates are 
reported and not intervals, and also without the estimates of uncertainty. 

 

• Recent example: June 25, 2014 news release stated (Bureau of Economic Analysis, 
2014):"Real gross domestic product . . . decreased at an annual rate of 2.9 % in the 
first quarter of 2014  according to the "third" estimate released by the Bureau of 
Economic Analysis. . . . The GDP estimate released today is based on more 
complete source data than were available for the "second" estimate issued last 
month. In the second estimate, real GDP was estimated to have decreased 1.0%."  

 

 



Bayes’ Theorem Revisited 

 
  

 P(X|D) =
P( X ∩  D) 

P(D) 
=

P D X × P(X)

P(D)
 

 

• Sometimes we can use other more visual & intuitive methods to examine 
such probabilities as in examples 1 and 2. 

 

• But sometimes, the inverse probabilities cannot be derived without Bayes’ 
Theorem as example 3 shows. 



Seemingly Useless But… 

 
• Are seemingly useless data sometimes useful? 

 

• We have all read of the Monty Hall paradox about 3 doors, 2 goats and a 
car. The proper strategy is to switch. Your chances of winning goes up from 
1/2 to  2/3. 

 

• At first blush, it might appear that the knowledge of one of the doors with 
a goat is useless. But appreciation of what this knowledge signifies is a key 
factor. 



Monty Hall using Bayes’ Theorem 

 

 Let A, B, C be the events  that prize is behind 𝑑𝑜𝑜𝑟𝐴 , 𝑑𝑜𝑜𝑟𝐵, 𝑑𝑜𝑜𝑟𝑐  respectively. 
 

• Suppose the Player picks 𝑑𝑜𝑜𝑟𝐴 . 
 

 Let O be the event that the show host reveals 𝑑𝑜𝑜𝑟𝐵 . 
 

• We want to know whether 𝑃 𝐴 𝑂 < 𝑃 𝐶 𝑂  

• Bayes’ Theorem tells us that                                                                                     

𝑃 𝐴 𝑂 =
𝑃(𝐴)×𝑃 𝑂 𝐴

𝑃(𝑂)
 and 𝑃 𝐶 𝑂 =

𝑃(𝐶)×𝑃 𝑂 𝐶

𝑃(𝑂)
 

• 𝑃 𝑂 𝐴 =
1

2
, (if 𝑑𝑜𝑜𝑟𝐴 has prize, either 𝑑𝑜𝑜𝑟𝐵 or 𝑑𝑜𝑜𝑟𝑐 can be opened) 

 

• 𝑃 𝑂 𝐵 = 0, (if 𝑑𝑜𝑜𝑟𝐵  has the prize, it won’t be opened.) 
 

• 𝑃 𝑂 𝐶 = 1, (if 𝑑𝑜𝑜𝑟𝑐 has the prize, 𝑑𝑜𝑜𝑟𝐵  will be opened.) 



Monty Hall using Bayes Theorem-2 

 

 
𝑃 𝑂 = 𝑃 𝑂 ∩ 𝐴 + 𝑃 𝑂 ∩ 𝐵 + 𝑃 𝑂 ∩ 𝐶  

= 𝑃 𝐴 𝑃 𝑂 𝐴 + 𝑃 𝐵 𝑃 𝑂 𝐵 + 𝑃 𝐶 𝑃 𝑂 𝐶 =
1

3
×

1

2
+

1

3
× 0 +

1

3
× 1 =

1

2
 

 

𝑃 𝐴 𝑂 =
𝑃(𝐴) × 𝑃 𝑂 𝐴

𝑃(𝑂)
=

1
3 ×

1
2

1
2

=
𝟏

𝟑
 

𝑃 𝐶 𝑂 =
𝑃(𝐶) × 𝑃 𝑂 𝐶

𝑃(𝑂)
=

1
3 × 1

1
2

=
𝟐

𝟑
 

 

• We double the chance of winning if we switch. 



Monty Hall: Dollar Under Cake 

• Imagine again the same problem but represent it as a cake with three 
equal slices, under one of which is a silver dollar. 

• If you picked up one slice, there is 2/3rd chance the dollar is in the 
remaining part of the cake.  

• Given a chance to switch, you should, even if you know some part of the 
REMAINING CAKE, say the red slice, does not have the dollar. 

Probability Cake 

1st door

2nd door

3rd door



Monty Hall: Dollar Under Cake-2 

 

• Imagine if there are 100 doors, the player chooses door 1. 

• Now the chance of this door containing the prize is 1% 

• The chance of the “rest of the cake” containing the dollar is 99% 

• Shouldn’t the player switch if given the chance? 

Probability Cake 

1st door

2nd door

3rd door



Example 2: Bayesian Reasoning  

  Base Rate Fallacy 

 

Testing for HIV  
Here positive test  MEANS  test  says “there is an infection”  

 

• About 0.01 % men are affected with HIV.  

• If an infected  man is tested, there is a 99.9% chance the test 
result is positive. 

• If a man is not infected, there is a 99.99% chance he will test 
negative. 

 

What is the chance a man who tests positive is infected with the 
HIV virus? 



Example 2: Bayesian Reasoning-2   
 

 

 

 

 

 

 

 

Probability(Infected, given test is positive)  

= approx 50%. 
This is far lower than what most people guess. 

It is easy to forget that the incidence rate of this disease is very low.  

Both the test  accuracy,  and the incidence rate  will influence the probability of 
a positive test result.                                                                                              



Example 2: Bayesian Reasoning (without tears) 

Assume 10,000 men.  
Of these 10,000 men, 1 is infected. He will test positive. 
Of the 9,999 men,  1  tests positive (9999 X 0.0001 = 0.9999) 
 
 
 
 
 
 
 
 
Two men test positive, of which only one has HIV.   
So if he tests positive, there is only a  50% chance a man has HIV  
  
Prob ( infected| positive test )     vs.    Prob ( positive test| infected )   

                               Two are different (Prosecutor’s fallacy) 



Example 3: Drunk Driver   
When Bayes’ Rule is essential, though problem seems easy 

 
• Sober wife to Drunk Husband: Don’t drive! 

 

• DH: Why not? 

 

• SW: Because it is unsafe. 25% accidents caused by drunk drivers… 

 

• DH: It is the safer alternative, as 75% accidents must be caused by sober 
drivers! 

 

• Shall we hire a blind chimpanzee to chauffeur us? 

 

• Since  less than 25% of  drivers are drunk, of course drunk drivers are  causing 
more than their proportionate share of accidents 

 



Example 3: Drunk driver 
 

The currect probability to examine is of course 

         Prob(Accident | Driver is Drunk) and compare it with  

         Prob(Accident | Driver is Sober)   
 

 There is no direct way to compute the probability a drunk driver has an accident  
and without Bayes’ theorem we cannot proceed.  

 

 Suppose we know 5% of drivers are drunk. 

  P(A|D) = P(D|A)*P(A)/P(D),  

        P(A|S) =  P(S|A)*P(A)/P(S)  
where P(D)= probability a driver is drunk, P(S) = prob. driver is sober, P(A)= probability a drive results in an accident. 

 P(A|D)/P(A|S) = [P(D|A)/P(S|A)]*P(S)/P(D) 

 =(25%/75%)*(95%/5%)=  19/3  

 =6.33 

 Thus even though 75% accidents are caused by sober drivers, a drunk driver 
has 6.33 times as much probability of having an accident as a sober driver. 



We are all Bayesians now! 

 

 



Explanation of Cartoon 

Θ -  Will I be attacked? 
X - I heard a noise nearby 

 
• A priori  - Oh no, someone might attack me!! 
• Pragmatic  - what's that noise? Prepare for an attack! 
• Frequentist  - how often did I hear a noise before I was attacked? 
• Sapiens  - thinks about how often he hears noises and how often he was 

attacked, but does not have the intuitive or instinctive ability to combine 
the ideas, as we saw in this talk…. 

• Bayesian  - answers the question, if I hear a noise, what is the chance of 
me being attacked? 

• So be aware that our brains do not intuitively give Bayesian results.  
• You may not need a computer but if you  find yourself wrestling with a 

problem like the one above, at least reach for a pencil and paper. 
 

38 



Summary 

 

• We started with: 

           He who begins to count, begins to err. 

• One must be careful when applying statistics  as biases abound.  

• One must question all assumptions underlying a model or analysis. 

• One must always remember that:  

 

He who stops counting, does not stop erring! 


